Oto jak szybko stworzyć sztuczne naczynia krwionośne do badań biomedycznych
29 maja 2025, 08:16W badaniach biomedycznych coraz ważniejszą rolę odgrywają układy organs-on-a-chip. To tkanki hodowane na układach mikroprzepływowych, które pozwalają, na przykład, na badanie wpływu leków na organizm czy interakcji pomiędzy organami. Układy takie mają poważną wadę. Tworzone na nich mini organy nie posiadają naczyń krwionośnych, co utrudnia prowadzenie wiarygodnych badań. Naukowcy z Uniwersytetu Technicznego w Wiedniu (TU Wien) i Keio University opracowali technologię szybkiego i powtarzalnego tworzenia naczyń krwionośnych za pomocą ultraszybkich impulsów laserowych.
Kolejny przełomowy laser
31 sierpnia 2009, 10:46Na Uniwersytecie Kalifornijskim w Berkeley powstał półprzewodnikowy laser, który potrafi wygenerować światło w wyjątkowo małej przestrzeni. Wystarczy mu do tego odległość zaledwie 5 nanometrów. To 100-krotnie mniej, niż potrzebują współczesne konwencjonalne lasery.
Wyjaśnili działanie lasera
25 stycznia 2010, 12:30Naukowcy z University of Utah wyjaśnili działanie polimerowego lasera, który opracowali przed 10 laty. Dotychczas nie było wiadomo, na jakiej zasadzie pracuje, więc niektórzy specjaliści w ogóle podejrzewali, że polimerowy laser to oszustwo.
Laser dla komputerów optycznych
7 sierpnia 2012, 11:57Gdy już jest taki cienki, to bardzo łatwo można umieścić go na chipie - powiedział profesor Zhenqiang Ma o wyjątkowym laserze. Najnowsze dzieło amerykańskich specjalistów może zrewolucjonizować informatykę, pozwalając na znacznie szybszy transfer danych pomiędzy poszczególnymi elementami komputera.
Chiny zbudowały unikatowy laser na wolnych elektronach
17 stycznia 2017, 12:23Chiny dołączyły do elitarnego klubu krajów posiadających laser na swobodnych elektronach (FEL). Takie urządzenia emitują światło w zakresie od podczerwieni do dalekiego ultrafioletu i są uznawane za źródło światła 4. generacji. W porównaniu z synchrotronami - źródłami światła 3. generacji - lasery na wolnych elektronach pozwalają na uzyskanie 1000-krotnie większej intensywności
Niemożliwy (lecz działający!) przepis na ultrakrótkie impulsy laserowe
1 marca 2017, 06:13Impulsowe lasery zbudowane w całości na światłowodach są coraz chętniej stosowane przez przemysł. Optycy z warszawskiego Centrum Laserowego Instytutu Chemii Fizycznej PAN i Wydziału Fizyki Uniwersytetu Warszawskiego wytworzyli w światłowodzie ultrakrótkie impulsy o dużej energii, używając w tym celu sposobu, który dotychczas uchodził za niemożliwy do zrealizowania.
Czarne dziury przyspieszają strumienie wodoru
9 lipca 2014, 08:02Naukowcom z University of Sheffield udało się rozwiązać jedną z zagadek ewolucji galaktyk. Zauważyli oni, że supermasywne czarne dziury znajdujące się w centrach niektórych galaktyk przyspieszają olbrzymie strumienie wodoru molekularnego wydobywające się z galaktyki. Jako, że wodór jest potrzebny do formowania się gwiazd, zjawisko powyższe ma bezpośredni wpływ na ewolucję galaktyk.
Pióro do rozpoznawania różnych nowotworów w 10 s
15 września 2017, 10:58Naukowcy z Uniwersytetu Teksańskiego w Austin opracowali urządzenie, które w czasie operacji błyskawicznie i trafnie rozpoznaje tkankę nowotworową. Dzięki MasSpec Pen wyniki pojawiają się już po 10 s, a więc 150-krotnie szybciej niż przy wykorzystaniu techniki histologicznej skrawków mrożonych
Nowotwór atakujący dzieci można leczyć, przywracając prawidłową pracę zegara molekularnego?
29 lipca 2021, 12:37Nerwiak zarodkowy to nowotwór rozwijający się z niedojrzałych komórek nerwowych obecnych w różnych częściach organizmu. Najczęściej rozwija się u dzieci poniżej 5. roku życia. Wiadomo, że choroba jest napędzana przez wysoką ekspresję genu MYCN. Naukowcy z Baylor College of Medicine i Texas Children's Cancer Center poinformowali właśnie, że kluczem do leczenia tego nowotworu może być zegar molekularny.
Laser, który zabija wirusy
9 listopada 2007, 13:25Kong-Thon Tsen, profesor fizyki z Arizona State University i jego syn Shaw-Wei Tsen, student patologii z Uniwersytetu Johna Hopkinsa, opracowali nowy sposób zabijania wirusów. Stworzyli oni laser USP (Ultra-short Pulse), który emituje impulsy zbyt słabe, by uszkodzić komórkę ludzkiego organizmu, jednak podczas testów bez żadnego problemu zabijał wirusa mozaiki tytoniowej.

